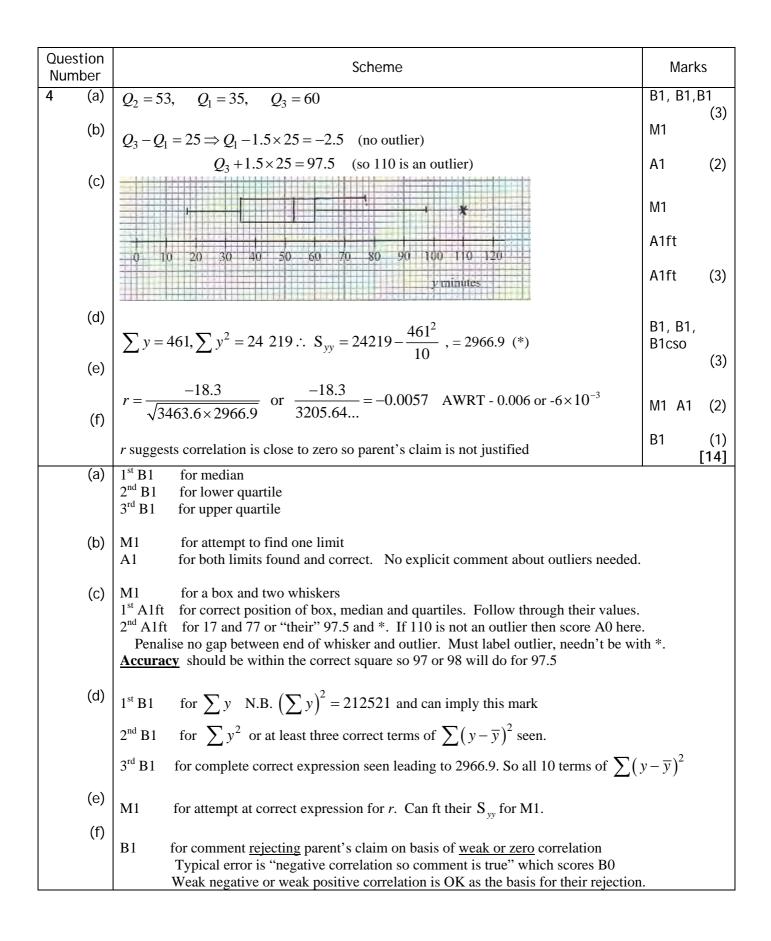


Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6683/01)


January 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks	8		
1 (a)	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$	M1 A1			
	$S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$	A1	(3)		
(b)	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$ $S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$ $b = \frac{S_{xy}}{S_{xx}} = 9.4765$	M1 A1 M1	(4)		
	$a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$	A1	(4)		
(C)	y = -10.7 + 9.48x Every (extra) <u>hour</u> spent using the programme produces about <u>9.5 marks improvement</u>	B1ft	(1)		
(d)	$y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21	M1,A1	(2)		
(e)	Model may not be valid since [8h is] outside the range [0.5 - 4].	B1 [(1) 11]		
(a)	M1 for a correct expression				
	1^{st} A1 for AWRT 11.4 for S_{xx}				
	2^{nd} A1 for AWRT 108 for S_{xy}				
(b)	Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A1A1				
	1 st M1 for using their values in correct formula 1 st A1 for AWRT 9.5				
	2^{nd} M1 for correct method for <i>a</i> (minus sign required)				
	2^{nd} A1 for equation with <i>a</i> and <i>b</i> AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine) Must have a full equation with <i>a</i> and <i>b</i> correct to awrt 3 sf				
(c)	(C) B1ft for comment conveying the idea of \underline{b} marks per hour. Must mention value of b but ft their value of b . No need to mention "extra" but must mention "marks" and "hou				
(d)	e.g. "9.5 times per hour" scores B0				
(u)	M1 for sub $x = 3.3$ into their regression equation from the end of part (b) A1 for awrt 21				
(e)	B1 for a statement that says or implies that it may <u>not</u> be valid because <u>outside the r</u> . They do not have to mention the values concerned here namely 8 h or 0.5 - 4	ange.			

Question Number	NChomo				
2 (a)	$E = \text{take regular exercise} \qquad B = \text{always eat breakfast} P(E \cap B) = P(E \mid B) \times P(B) = \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$	M1 A1 (2)			
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or } P(E' \mid B') \text{or } P(B' \cap E) \text{or } P(B \cap E')$ $= \frac{62}{75} = \frac{13}{25} = \frac{12}{75} = \frac{32}{75}$ $P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{75} \text{or } 0.17\dot{3}$ $P(E \mid B) = 0.36 \neq 0.40 = P(E) \text{or } P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$	M1 A1 M1 A1 (4)			
(c)	$P(E B) = 0.36 \neq 0.40 = P(E) \text{ or } P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So <i>E</i> and <i>B</i> are <u>not</u> statistically independent	M1 A1 (2) [8]			
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(<i>E</i> <i>B</i>)×P(<i>B</i>) and at least one correct value seen. A1 for 0.24 or exact equiv. NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks.				
(b) (c)	1 st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) <u>Or</u> a full method for P(E' B') requires 1 - P(E B') and equation for P(E B'): (a) + $\frac{x}{3} = \frac{2}{5}$ <u>Or</u> a full method for P(B' ∩ E) <u>or</u> P(B ∩ E') [or other valid method] 2 nd M1 for a method leading to answer e.g. 1-P(E ∪ B) <u>or</u> P(B')×P(E' B') <u>or</u> P(B') - P(B' ∩ E) <u>or</u> P(E') - P(B ∩ E') <u>Venn Diagram</u> 1 st M1 for diagram with attempt at $\frac{2}{5}$ - P(B ∩ E) or $\frac{2}{3}$ - P(B ∩ E). Can ft their (a) 1 st A1 for a correct first probability as listed or 32, 18 and 12 on Venn Diagram 2 nd M1 for attempting 75 - their (18 + 32 + 12) M1 for identifying suitable values to test for independence e.g. P(E) = 0.40 and P(E B) = 0.36 <u>Or</u> P(E)×P(B) = and P(E ∩ B) = their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values seen somewhere A1 for correct values and a correct comment				
	Diagrams You may see these or find these useful for identifying probabilities. Diagrams You may see these or find these useful for identifying probabilities. Common Errors (a) $\frac{9}{25}$ is MOAO (b) $P(EUB) = \frac{53}{75}$ sc $1 - P(E \cup B) = \frac{22}{75}$ (b) $P(B') \times P(E')$ scores 0/4	scores M1A0			

PMT

	stion nber		Scheme			Mar	ks
3	(a)	$E(X) = 0 \times 0.4 + 1 \times 0.3 +$	$.+3 \times 0.1, = 1$			M1, A1	(2)
	(b)	$F(1.5) = [P(X \le 1.5) =] P(X \le 1.5)$	$X \le 1), = \ 0.4 + 0.3 = 0$.7		M1, A1	(2)
	(c)	$E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.3$	$3 + + 3^2 \times 0.1$, = 2			M1, A1	
		$Var(X) = 2 - 1^2$, = 1	(*)			M1, A1	cso (4)
	(d)	$\operatorname{Var}(5-3X) = (-3)^2 \operatorname{Var}(4)$	X), = 9			M1, A1	
	(e)	Total	Cases	Probability	1		
		10(a)	$(X=3) \cap (X=1)$	$0.1 \times 0.3 = 0.03$			
		4	$(X=1) \cap (X=3)$	$0.3 \times 0.1 = 0.03$	-		
			$(X=2) \cap (X=2)$	$0.2 \times 0.2 = 0.04$			
		5	$(X=3) \cap (X=2)$	$0.1 \times 0.2 = 0.02$		B1B1B1	I
		5	$(X=2) \cap (X=3)$	$0.2 \times 0.1 = 0.02$]	M1	
		6	$(X=3) \cap (X=3)$	$0.1 \times 0.1 = 0.01$		A1	
		Total probability $= 0.03 + 0.03$	03+0.04 +0.02 + 0.02 + 0	0.01 = 0.15		A1	(6)
	(a)	M1 for at least 3 terms se	en. Correct answer only	scores M1A1. Dividing	g by $k \neq 1$ is	s M0.	[16]
	(b)		.[Beware : $2 \times 0.2 + 3 \times 0.2$				
ALT	(c)	1 st M1 for at least 2 non-zero terms seen. $E(X^2) = 2$ alone is M0. Condone calling $E(X^2) = Var(X)$. 1 st A1 is for an answer of 2 or a fully correct expression. 2 nd M1 for $-\mu^2$, condone 2 – 1, unless clearly 2 Allow $2-\mu^2$, with = 1 even if $E(X) \neq 1$ 2 nd A1 for a fully correct solution with no incorrect working seen, both Ms required. $\sum (x-\mu)^2 \times P(X = x)$					
		1 st M1 for an attempt at a full list of $(x - \mu)^2$ values and probabilities. 1 st A1 if all correct					
		2 nd M1 for at least 2 non-zer	ro terms of $(x - \mu)^2 \times P($	X = x) seen. 2 nd A1 fo	or 0.4 + 0.2 +	-0.4 = 1	
	(d) (e)	M1 for use of the correct formula. $-3^2 \operatorname{Var}(X)$ is M0 unless the final answer is >0.					
ALT		2 nd B1 for all cases listed f 3 rd B1 for a complete list of <u>Using Cumulative probabilit</u> 1 st B1 for one or more cur 2 nd B1 for both cumulative M1 for one correct pair 1 st A1 for all 6 correct prob	of all 6 cases	These may be high d e.g.2 then 2 or more o 1 for a complete list 1, 3 ultiplied 3, 0.04, 0.02, 0.02, 0.01	nlighted in a t r 3 then 1 or 3; 2, ≥2; 3, ≥	} table more 1)

Question Number	Scheme	Mar	ks
5 (a)	8-10 hours: width = $10.5 - 7.5 = 3$ represented by 1.5cm 16-25 hours: width = $25.5 - 15.5 = 10$ so represented by 5 cm 8- 10 hours: height = fd = $18/3 = 6$ represented by 3 cm 16-25 hours: height = fd = $15/10 = 1.5$ represented by 0.75 cm	B1 M1 A1	(3)
(b)	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1	
	$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$	A1	
(c)	$Q_3 = 10.5 + \frac{(78 - 54)}{25} \times 5[=15.3] \text{or } 10.5 + \frac{(78.75 - 54)}{25} \times 5[=15.45 \ \text{(}15.5]]$ IQR = (15.3 - 6.3) = <u>9</u>	A1 A1ft	(5)
(0)	$\sum fx = 1333.5 \Rightarrow \overline{x} = \frac{1333.5}{104} = $ AWRT <u>12.8</u> $\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \overline{x}^2} = \sqrt{262.05 - \overline{x}^2} $ AWRT <u>9.88</u>	M1 A1	
(d)	$\sum fx^2 = 27254 \Longrightarrow \sigma_x = \sqrt{\frac{27254}{104}} - \overline{x}^2 = \sqrt{262.05 - \overline{x}^2} \qquad \text{AWRT } \underline{9.88}$	M1 A1	(4)
(e)	$Q_3 - Q_2 [= 5.1] > Q_2 - Q_1 [= 3.9]$ or $Q_2 < \overline{x}$ So data is positively skew	B1ft dB1	(2)
	Use median and IQR, since data is skewed <u>or</u> not affected by extreme values or outliers	B1 B1	(2) [16]
(a)	M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where $SF \neq$	1	
(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores M		
	M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 52.5 1 st A1 for 10.2 for median. Using (<i>n</i> + 1) allow awrt 10.3		
	2^{nd} A1 for a correct expression for either Q_1 or Q_3 (allow 26.25 and 78.75) <u>Mu</u>	<u>NB</u> : ist see	
	3^{rd} A1 for correct expressions for both Q_1 and Q_3	some	
(c)	4 th A1ft for IQR, ft their quartiles. Using $(n + 1)$ gives 6.28 and 15.45 1 st M1 for attempting $\sum fx$ and \overline{x}	ethod	
(d)	2 nd M1 for attempting $\sum fx^2$ and σ_x , $$ is needed for M1. Allow $s = awrt 9.93$		
(e)	 1st B1ft for suitable test, values need not be seen but statement must be compatible wire values used. Follow through their values 2nd dB1 Dependent upon their test showing positive and for stating positive skew If their test shows negative skew they can score 1st B1 but lose the second 	th	
	1 st B1 for choosing median and IQR. Must mention both. }Award independent 2 nd B1 for suitable reason } e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned	<u>dently</u>	

Ques Num		Scheme	Mai	ŕks
6	(a)	(39-30)	M1	
		$P(X < 39) = P\left(Z < \frac{39 - 30}{5}\right)$		
		= P(Z < 1.8) = 0.9641 (allow awrt 0.964)	A1	(2)
	(b)			
		$P(X < d) = P\left(Z < \frac{d-30}{5}\right) = 0.1151$		
		$1 - 0.1151 = 0.8849$ (allow ± 1.2)	M1 B1	
		$\Rightarrow \qquad z = -1.2 \qquad (unlow \pm 1.2)$	M1A1	(4)
		$1-0.1151 = 0.8849$ $\Rightarrow z = -1.2$ $\therefore \frac{d-30}{5} = -1.2$ $\frac{d=24}{2}$ (allow ± 1.2)		
	(c)	5		
	. ,	$P(X > e) = 0.1151$ so $e = \mu + (\mu - \text{their } d)$ or $\frac{e - 30}{5} = 1.2 \text{ or } - \text{their } z$	M1	
		e = 36	A1	(2)
	(d)	$P(d < X < e) = 1 - 2 \times 0.1151$		
		$P(a < x < e) = 1 - 2 \times 0.1151$ = 0.7698 AWRT <u>0.770</u>	M1 A1	(2)
				[10]
		Answer only scores all marks in each section BUT check (b) and (c) are in correct of	order	
(a) M1 for standardising with σ , $z = \pm \frac{39 - 30}{5}$ is OK				
		A1 for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A	0	
	(b)			
	(~)	1 st M1 for attempting 1- 0.1151. Must be seen in (b) in connection with finding d B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a z value by its use.		
		This mark is only available in part (b).		
		2^{nd} M1 for $\left(\frac{d-30}{5}\right)$ = their negative z value (or equivalent)		
	(c)	M1 for a full method to find <i>e</i> . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$	here	
		If they use symmetry about the mean $\mu + (\mu - \text{their } d)$ then ft their <i>d</i> for M1 Must explicitly see the method used unless the answer is correct.		
	(d)	M1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151		
		or If their $d < \text{their } e$ using their values with $P(X < e) - P(X < d)$		
		If their $d \ge$ their e then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability ≥ 1 for part (d) scores M0A0		
		A negative probability or probability > 1 for part (d) scores M0A0		